Filtre AGG #

La plupart des backends basés sur des pixels dans Matplotlib utilisent la géométrie anti-grain (AGG) pour le rendu. Vous pouvez modifier le rendu des Artistes en appliquant un filtre via Artist.set_agg_filter.

démo filtre agg
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
from matplotlib.colors import LightSource
from matplotlib.artist import Artist
import numpy as np


def smooth1d(x, window_len):
    # copied from https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html
    s = np.r_[2*x[0] - x[window_len:1:-1], x, 2*x[-1] - x[-1:-window_len:-1]]
    w = np.hanning(window_len)
    y = np.convolve(w/w.sum(), s, mode='same')
    return y[window_len-1:-window_len+1]


def smooth2d(A, sigma=3):
    window_len = max(int(sigma), 3) * 2 + 1
    A = np.apply_along_axis(smooth1d, 0, A, window_len)
    A = np.apply_along_axis(smooth1d, 1, A, window_len)
    return A


class BaseFilter:

    def get_pad(self, dpi):
        return 0

    def process_image(self, padded_src, dpi):
        raise NotImplementedError("Should be overridden by subclasses")

    def __call__(self, im, dpi):
        pad = self.get_pad(dpi)
        padded_src = np.pad(im, [(pad, pad), (pad, pad), (0, 0)], "constant")
        tgt_image = self.process_image(padded_src, dpi)
        return tgt_image, -pad, -pad


class OffsetFilter(BaseFilter):

    def __init__(self, offsets=(0, 0)):
        self.offsets = offsets

    def get_pad(self, dpi):
        return int(max(self.offsets) / 72 * dpi)

    def process_image(self, padded_src, dpi):
        ox, oy = self.offsets
        a1 = np.roll(padded_src, int(ox / 72 * dpi), axis=1)
        a2 = np.roll(a1, -int(oy / 72 * dpi), axis=0)
        return a2


class GaussianFilter(BaseFilter):
    """Simple Gaussian filter."""

    def __init__(self, sigma, alpha=0.5, color=(0, 0, 0)):
        self.sigma = sigma
        self.alpha = alpha
        self.color = color

    def get_pad(self, dpi):
        return int(self.sigma*3 / 72 * dpi)

    def process_image(self, padded_src, dpi):
        tgt_image = np.empty_like(padded_src)
        tgt_image[:, :, :3] = self.color
        tgt_image[:, :, 3] = smooth2d(padded_src[:, :, 3] * self.alpha,
                                      self.sigma / 72 * dpi)
        return tgt_image


class DropShadowFilter(BaseFilter):

    def __init__(self, sigma, alpha=0.3, color=(0, 0, 0), offsets=(0, 0)):
        self.gauss_filter = GaussianFilter(sigma, alpha, color)
        self.offset_filter = OffsetFilter(offsets)

    def get_pad(self, dpi):
        return max(self.gauss_filter.get_pad(dpi),
                   self.offset_filter.get_pad(dpi))

    def process_image(self, padded_src, dpi):
        t1 = self.gauss_filter.process_image(padded_src, dpi)
        t2 = self.offset_filter.process_image(t1, dpi)
        return t2


class LightFilter(BaseFilter):

    def __init__(self, sigma, fraction=0.5):
        self.gauss_filter = GaussianFilter(sigma, alpha=1)
        self.light_source = LightSource()
        self.fraction = fraction

    def get_pad(self, dpi):
        return self.gauss_filter.get_pad(dpi)

    def process_image(self, padded_src, dpi):
        t1 = self.gauss_filter.process_image(padded_src, dpi)
        elevation = t1[:, :, 3]
        rgb = padded_src[:, :, :3]
        alpha = padded_src[:, :, 3:]
        rgb2 = self.light_source.shade_rgb(rgb, elevation,
                                           fraction=self.fraction)
        return np.concatenate([rgb2, alpha], -1)


class GrowFilter(BaseFilter):
    """Enlarge the area."""

    def __init__(self, pixels, color=(1, 1, 1)):
        self.pixels = pixels
        self.color = color

    def __call__(self, im, dpi):
        alpha = np.pad(im[..., 3], self.pixels, "constant")
        alpha2 = np.clip(smooth2d(alpha, self.pixels / 72 * dpi) * 5, 0, 1)
        new_im = np.empty((*alpha2.shape, 4))
        new_im[:, :, :3] = self.color
        new_im[:, :, 3] = alpha2
        offsetx, offsety = -self.pixels, -self.pixels
        return new_im, offsetx, offsety


class FilteredArtistList(Artist):
    """A simple container to filter multiple artists at once."""

    def __init__(self, artist_list, filter):
        super().__init__()
        self._artist_list = artist_list
        self._filter = filter

    def draw(self, renderer):
        renderer.start_rasterizing()
        renderer.start_filter()
        for a in self._artist_list:
            a.draw(renderer)
        renderer.stop_filter(self._filter)
        renderer.stop_rasterizing()


def filtered_text(ax):
    # mostly copied from contour_demo.py

    # prepare image
    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2

    # draw
    ax.imshow(Z, interpolation='bilinear', origin='lower',
              cmap=cm.gray, extent=(-3, 3, -2, 2), aspect='auto')
    levels = np.arange(-1.2, 1.6, 0.2)
    CS = ax.contour(Z, levels,
                    origin='lower',
                    linewidths=2,
                    extent=(-3, 3, -2, 2))

    # contour label
    cl = ax.clabel(CS, levels[1::2],  # label every second level
                   inline=True,
                   fmt='%1.1f',
                   fontsize=11)

    # change clabel color to black
    from matplotlib.patheffects import Normal
    for t in cl:
        t.set_color("k")
        # to force TextPath (i.e., same font in all backends)
        t.set_path_effects([Normal()])

    # Add white glows to improve visibility of labels.
    white_glows = FilteredArtistList(cl, GrowFilter(3))
    ax.add_artist(white_glows)
    white_glows.set_zorder(cl[0].get_zorder() - 0.1)

    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)


def drop_shadow_line(ax):
    # copied from examples/misc/svg_filter_line.py

    # draw lines
    l1, = ax.plot([0.1, 0.5, 0.9], [0.1, 0.9, 0.5], "bo-")
    l2, = ax.plot([0.1, 0.5, 0.9], [0.5, 0.2, 0.7], "ro-")

    gauss = DropShadowFilter(4)

    for l in [l1, l2]:

        # draw shadows with same lines with slight offset.
        xx = l.get_xdata()
        yy = l.get_ydata()
        shadow, = ax.plot(xx, yy)
        shadow.update_from(l)

        # offset transform
        transform = mtransforms.offset_copy(l.get_transform(), ax.figure,
                                            x=4.0, y=-6.0, units='points')
        shadow.set_transform(transform)

        # adjust zorder of the shadow lines so that it is drawn below the
        # original lines
        shadow.set_zorder(l.get_zorder() - 0.5)
        shadow.set_agg_filter(gauss)
        shadow.set_rasterized(True)  # to support mixed-mode renderers

    ax.set_xlim(0., 1.)
    ax.set_ylim(0., 1.)

    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)


def drop_shadow_patches(ax):
    # Copied from barchart_demo.py
    N = 5
    group1_means = [20, 35, 30, 35, 27]

    ind = np.arange(N)  # the x locations for the groups
    width = 0.35  # the width of the bars

    rects1 = ax.bar(ind, group1_means, width, color='r', ec="w", lw=2)

    group2_means = [25, 32, 34, 20, 25]
    rects2 = ax.bar(ind + width + 0.1, group2_means, width,
                    color='y', ec="w", lw=2)

    drop = DropShadowFilter(5, offsets=(1, 1))
    shadow = FilteredArtistList(rects1 + rects2, drop)
    ax.add_artist(shadow)
    shadow.set_zorder(rects1[0].get_zorder() - 0.1)

    ax.set_ylim(0, 40)

    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)


def light_filter_pie(ax):
    fracs = [15, 30, 45, 10]
    explode = (0, 0.05, 0, 0)
    pies = ax.pie(fracs, explode=explode)

    light_filter = LightFilter(9)
    for p in pies[0]:
        p.set_agg_filter(light_filter)
        p.set_rasterized(True)  # to support mixed-mode renderers
        p.set(ec="none",
              lw=2)

    gauss = DropShadowFilter(9, offsets=(3, 4), alpha=0.7)
    shadow = FilteredArtistList(pies[0], gauss)
    ax.add_artist(shadow)
    shadow.set_zorder(pies[0][0].get_zorder() - 0.1)


if __name__ == "__main__":

    fix, axs = plt.subplots(2, 2)

    filtered_text(axs[0, 0])
    drop_shadow_line(axs[0, 1])
    drop_shadow_patches(axs[1, 0])
    light_filter_pie(axs[1, 1])
    axs[1, 1].set_frame_on(True)

    plt.show()

Durée totale d'exécution du script : (0 minutes 1,506 secondes)

Galerie générée par Sphinx-Gallery