Noter
Cliquez ici pour télécharger l'exemple de code complet
Bases de l'intrigue du violon #
Les diagrammes en violon sont similaires aux histogrammes et aux diagrammes en boîte en ce sens qu'ils montrent une représentation abstraite de la distribution de probabilité de l'échantillon. Plutôt que d'afficher le nombre de points de données qui tombent dans des bacs ou des statistiques d'ordre, les tracés de violon utilisent l'estimation de la densité du noyau (KDE) pour calculer une distribution empirique de l'échantillon. Ce calcul est contrôlé par plusieurs paramètres. Cet exemple montre comment modifier le nombre de points auxquels le KDE est évalué ( points
) et comment modifier la bande passante du KDE ( bw_method
).
Pour plus d'informations sur les parcelles de violon et KDE, les documents scikit-learn ont une excellente section : https://scikit-learn.org/stable/modules/density.html
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# fake data
fs = 10 # fontsize
pos = [1, 2, 4, 5, 7, 8]
data = [np.random.normal(0, std, size=100) for std in pos]
fig, axs = plt.subplots(nrows=2, ncols=5, figsize=(10, 6))
axs[0, 0].violinplot(data, pos, points=20, widths=0.3,
showmeans=True, showextrema=True, showmedians=True)
axs[0, 0].set_title('Custom violinplot 1', fontsize=fs)
axs[0, 1].violinplot(data, pos, points=40, widths=0.5,
showmeans=True, showextrema=True, showmedians=True,
bw_method='silverman')
axs[0, 1].set_title('Custom violinplot 2', fontsize=fs)
axs[0, 2].violinplot(data, pos, points=60, widths=0.7, showmeans=True,
showextrema=True, showmedians=True, bw_method=0.5)
axs[0, 2].set_title('Custom violinplot 3', fontsize=fs)
axs[0, 3].violinplot(data, pos, points=60, widths=0.7, showmeans=True,
showextrema=True, showmedians=True, bw_method=0.5,
quantiles=[[0.1], [], [], [0.175, 0.954], [0.75], [0.25]])
axs[0, 3].set_title('Custom violinplot 4', fontsize=fs)
axs[0, 4].violinplot(data[-1:], pos[-1:], points=60, widths=0.7,
showmeans=True, showextrema=True, showmedians=True,
quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5)
axs[0, 4].set_title('Custom violinplot 5', fontsize=fs)
axs[1, 0].violinplot(data, pos, points=80, vert=False, widths=0.7,
showmeans=True, showextrema=True, showmedians=True)
axs[1, 0].set_title('Custom violinplot 6', fontsize=fs)
axs[1, 1].violinplot(data, pos, points=100, vert=False, widths=0.9,
showmeans=True, showextrema=True, showmedians=True,
bw_method='silverman')
axs[1, 1].set_title('Custom violinplot 7', fontsize=fs)
axs[1, 2].violinplot(data, pos, points=200, vert=False, widths=1.1,
showmeans=True, showextrema=True, showmedians=True,
bw_method=0.5)
axs[1, 2].set_title('Custom violinplot 8', fontsize=fs)
axs[1, 3].violinplot(data, pos, points=200, vert=False, widths=1.1,
showmeans=True, showextrema=True, showmedians=True,
quantiles=[[0.1], [], [], [0.175, 0.954], [0.75], [0.25]],
bw_method=0.5)
axs[1, 3].set_title('Custom violinplot 9', fontsize=fs)
axs[1, 4].violinplot(data[-1:], pos[-1:], points=200, vert=False, widths=1.1,
showmeans=True, showextrema=True, showmedians=True,
quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5)
axs[1, 4].set_title('Custom violinplot 10', fontsize=fs)
for ax in axs.flat:
ax.set_yticklabels([])
fig.suptitle("Violin Plotting Examples")
fig.subplots_adjust(hspace=0.4)
plt.show()
Références
L'utilisation des fonctions, méthodes, classes et modules suivants est illustrée dans cet exemple :
Durée totale d'exécution du script : (0 minutes 1,134 secondes)