Noter
Cliquez ici pour télécharger l'exemple de code complet
Personnalisation de l'intrigue du violon #
Cet exemple montre comment personnaliser entièrement les tracés de violon. Le premier graphique affiche le style par défaut en fournissant uniquement les données. Le deuxième tracé limite d'abord ce que Matplotlib dessine avec des arguments de mots clés supplémentaires. Ensuite, une représentation simplifiée d'une boîte à moustaches est dessinée en haut. Enfin, les styles des artistes des violons sont modifiés.
Pour plus d'informations sur les parcelles de violon, les documents scikit-learn ont une excellente section : https://scikit-learn.org/stable/modules/density.html
import matplotlib.pyplot as plt
import numpy as np
def adjacent_values(vals, q1, q3):
upper_adjacent_value = q3 + (q3 - q1) * 1.5
upper_adjacent_value = np.clip(upper_adjacent_value, q3, vals[-1])
lower_adjacent_value = q1 - (q3 - q1) * 1.5
lower_adjacent_value = np.clip(lower_adjacent_value, vals[0], q1)
return lower_adjacent_value, upper_adjacent_value
def set_axis_style(ax, labels):
ax.xaxis.set_tick_params(direction='out')
ax.xaxis.set_ticks_position('bottom')
ax.set_xticks(np.arange(1, len(labels) + 1), labels=labels)
ax.set_xlim(0.25, len(labels) + 0.75)
ax.set_xlabel('Sample name')
# create test data
np.random.seed(19680801)
data = [sorted(np.random.normal(0, std, 100)) for std in range(1, 5)]
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(9, 4), sharey=True)
ax1.set_title('Default violin plot')
ax1.set_ylabel('Observed values')
ax1.violinplot(data)
ax2.set_title('Customized violin plot')
parts = ax2.violinplot(
data, showmeans=False, showmedians=False,
showextrema=False)
for pc in parts['bodies']:
pc.set_facecolor('#D43F3A')
pc.set_edgecolor('black')
pc.set_alpha(1)
quartile1, medians, quartile3 = np.percentile(data, [25, 50, 75], axis=1)
whiskers = np.array([
adjacent_values(sorted_array, q1, q3)
for sorted_array, q1, q3 in zip(data, quartile1, quartile3)])
whiskers_min, whiskers_max = whiskers[:, 0], whiskers[:, 1]
inds = np.arange(1, len(medians) + 1)
ax2.scatter(inds, medians, marker='o', color='white', s=30, zorder=3)
ax2.vlines(inds, quartile1, quartile3, color='k', linestyle='-', lw=5)
ax2.vlines(inds, whiskers_min, whiskers_max, color='k', linestyle='-', lw=1)
# set style for the axes
labels = ['A', 'B', 'C', 'D']
for ax in [ax1, ax2]:
set_axis_style(ax, labels)
plt.subplots_adjust(bottom=0.15, wspace=0.05)
plt.show()
Références
L'utilisation des fonctions, méthodes, classes et modules suivants est illustrée dans cet exemple :